
NASA-TM-111505

J

/

Efficient Compositional Modeling

for Generating Causal Explanations

P. PANDURANG NAYAK

RECOM TECHNOLOGIES, INC.

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

NASA AMES RESEARCH CENTER

MAIL STOP 269-2

MOFFETT FIELD, CA 94035-1000

LEO JOSKOWICZ

IBM T.J. WATSON RESEARCH CENTER

NASA Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-93- 24

August, 1993

Efficient Compositional Modeling

for Generating Causal Explanations

P. Pandurang Nayak

Recom Technologies, NASA Ames Research Center

AI Research Branch, MS 269-2

Moffett Field, CA 94035

Leo Joskowicz

IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

Abstract

Building adequate models that embody the simplifications, abstractions,

and approximations that parsimoniously describe the relevant system phenom-

ena for the task at hand is essential for effective problem solving. Compositional

modeling is a framework for constructing adequate device models by composing

model fragments selected from a model fragment library. This paper presents

an implemented polynomial-time model composition algorithm for constructing

adequate models that provide parsimonious causal explanations of the function-

ing of a device. To model important aspects of device function, we introduce

expected behaviors, an abstract, causal accounts of what a device does. To

focus the search for a model and guarantee efficient model construction, we

introduce a new approximation relationship between model fragments, called a

causal approximation. For efficient model fragment retrieval and model gener-

ation, we organize model fragments into various hierarchies. For efficient model

validation, we use causal ordering and a new logarithm-based order of magni-

tude reasoning technique. We have implemented the compositional modeling

algorithm and produced adequate models and causal explanations of how a va-

riety of electromechanical devices function, based on a library of 20 component

types and 150 model fragments.

1 Introduction

Effective problem solving about complex physical systems requires building models

that are both adequate for the task and computationally efficient. Adequate models

embody the simplifications, abstractions, and approximations that parsimoniously

describe the relevant system phenomena for the task at hand. Overly detailed models

are computationally expensive, contain irrelevant information, obscure qualitative

differences, and often have unstable solutions or are altogether unsolvable. Overly

simplistic models miss or distort key phenomena, ignore relevant interactions, and

can lead to erroneous conclusions.

In current practice, most system models are either hand-crafted or are automat-

ically derived assuming the relevant system-wide phenomena have been identified.

Hand-crafting models is a difficult, error-prone, and time-consuming activity. It re-

quires skilled and experienced practitioners with a good understanding of what the

system does, and how it does it. Recent model-based reasoning systems derive de-

vice models from a description of their structure based on so called system-wide or

class-wide assumptions. These assumptions determine the simplifications, type of

phenomena, and kind of interactions that apply to all the components of the device.

For example, in modeling digital circuits, it is customary to have a model for each

component that ignores all but its information processing capabilities. While useful,

system-wide assumptions limit the modeling scope and fail completely in devices that

exhibit many types of phenomena. The goal of automating the model construction

process is to overcome these limitations and provide future intelligent programs with

an effective modeling tool.

Recent research by Falkenhainer and Forbus [12, 13] proposes compositional mod-

eling, an automated modeling framework for constructing adequate device models.

Compositional modeling creates models by composing model fragments selected from

a model fragment library. Model fragments are partial descriptions of components

and physical phenomena embodying different assumptions, simplifications, abstrac-

tions, and approximations. Model construction is a search process, where the goal is

to select an adequate model from the space of possible models defined by the library's

model fragments. Compositional modeling is a broad and flexible strategy that can

be applied to a variety of tasks. To be effective, it requires a rich, well-organized

knowledge base and an effective model search strategy which uses the task and the

various available constraints to focus a potentially exponential search process. Falken-

hairier and Forbus use compositional modeling within a tutorial setting, and define

model adequacy with respect to a set of modeling constraints and a user query. They

develop a model composition algorithm that constructs a device model that satisfies

the modeling constraints and answers the user query.

In this paper, we address the problem of efficiently generating causal explana-

tions, and the models supporting them, of how a device functions using composi-

tional modeling. Causal explanations have long been known to play a central role in

communicating with human users and in automating a vast array of reasoning tasks

2

[4, 16, 32, 39, 40, 41, 44]. In tutoring, they are used to explain how a device works

[4]. In diagnosis, they are used to focus on the components that could have caused

a particular symptom [7]. In design, they are used to focus on the mechanisms that

can produce the desired behavior [46, 47]. In quantitative analysis, they are used

to guide the analysis by providing an overall structure for solving the problem at

hand [8]. Models that support causal explanations are necessary to generate causal

explanations and are useful to answer queries, run simulations, and make predictions.

They can be used as base models that can be fine-tuned and incrementally modified
for other tasks.

This paper presents an implemented polynomial-time model composition algo-

rithm for constructing adequate models that provide parsimonious causal explana-

tions of the functioning of a device. The input to the program is the structure of the

device (its components, their physical and structural properties, and their intercon-

nections), the expected behavior of the device, and the library of model fragments.

The output is a causal explanation of the expected behavior and the adequate device

model that supports the explanation.

We represent important aspects of device function using expected behaviors, which

are abstract, causal descriptions of what a device does (but not how it does it).

Expected behaviors are commonly available either directly from the user, from the

description of the problem to be solved, or from the context in which the device

operates. For example, expected behaviors are commonly associated with device

names: a light bulb transforms electrical energy into light, a vacuum cleaner picks

up dust, a disk drive stores and retrieves information. Expected behaviors play a

central role in defining model adequacy, in determining relevance of phenomena, and

in providing guidance to the model composition algorithm. Without them we cannot

discriminate between a myriad of consistent device models: the adequate model for a

disk drive, for example, depends on whether it is intended to be used as an information

retrieval device, a heater, or a door stop. Adequate device models are required to

provide causal explanations for how the expected behavior is achieved.

The structural and behavioral context of the device provide the additional con-

straints for defining model adequacy and play an important role in model composition.

The structural context is defined by the components, their physical and structural

properties, and their structural relations, such as their interconnections. In con-

junction with the model fragment library, the structural context defines the space

of possible device models by identifying the set of applicable model fragments that

can be composed to form device models. The behavioral context is determined by

the values of the physical parameters used to model the device. It ensures that all

significant phenomena are included in the device model, and that all such phenomena

are modeled only with applicable approximations.

The focus provided by the task of generating parsimonious causal explanations,

and the constraints provided by the structural and behavioral contexts, allowed us

to develop an efficient polynomial-time model composition algorithm for generating

causal explanations and the models supporting them. We use causal approximations

[29, 31], an approximation relationship between model fragments which ensures that

the causal relations entailed by a model decrease monotonically as models become

simpler. Hence, if a model cannot explain the expected behavior, neither does a sim-

pler model. This property allows us to avoid searching all possible combinations of

model fragments, leading to a provably tractable model composition algorithm. We

efficiently validate device models against the expected behavior by generating causal

explanations using causal ordering [9, 14, 22, 19, 37, 45]. Since device behavior is

used to determine significance, we use a new logarithm-based order of magnitude

reasoning technique [30] to generate the behavior. We improved the representation of

model fragments in the library by organizing them into various hierarchies. This or-

ganization provides compact representations, facilitates knowledge-base construction

and maintenance, and supports efficient model fragment retrieval and device model

generation.

We have implemented the model composition algorithm in Common Lisp and

tested it on a variety of electromechanical devices drawn from various sources [2, 25,

38]. For this purpose, we developed a library consisting of 20 types of components

including wires, bimetallic strips, springs, and permanent magnets, and 150 types

of model fragments, including descriptions of electricity, magnetism, heat, and the

kinematics and dynamics of one-dimensional motion. The devices have between 10

and 54 components each, and include different types of temperature gauges, ther-

mostats, relays, and workpiece inspection devices. The number of possible models of

each device ranges from about 1012 to about 10 r2. In all cases the program constructs

adequate models in 0.5 to 8 minutes on a Texas Instruments Explorer II workstation.

The rest of this paper is organized as follows: Section 2 motivates our approach

with an example. Section 3 defines model fragments and describes the model frag-

ment library organization. Section 4 defines model adequacy with respect to the task

of generating causal explanations of expected behaviors. Section 5 defines causal ap-

proximations and describes the new model composition algorithm. Section 6 presents

experimental results from the implementation. Section 7 discusses related work and

Section 8 concludes with possible extensions and future work.

2 Example: modeling a temperature gauge

In this section, we motivate the problem and illustrate our approach on a device.

Figure 1 shows the schematic of a temperature gauge consisting of a battery, a wire,

a bimetallic strip, a pointer, and a thermistor. A thermistor is a semiconductor

device; a small increase in its temperature causes a large decrease in its resistance. A

bimetallic strip has two strips made of different metals welded together. Temperature

changes cause the two strips to expand by different amounts, causing the bimetallic

strip to bend. The function of the temperature gauge is to measure the temperature

of a liquid in a container by posting its value on a scale. An important aspect of

this function is captured by the following expected behavior: the temperature of the

po'mter'_ bi_!t!llic thermistor

strip
• terminal connnections

container of water

Figure 1: A temperature gauge

thermistor determines the angular position of the pointer.

The temperature gauge achieves its expected behavior as follows: the thermistor

senses the water temperature. The thermistor temperature determines the thermistor

resistance, which determines the circuit current. This current generates heat in the

wire, which determines the temperature of the bimetallic strip. This determines the

deflection of the free end of the bimetallic strip, and hence the position of the pointer

along the scale.

The main difficulty in modeling this device is accounting for the variety of phys-

ical phenomena involved (electrical, thermal, magnetic, kinematic), assessing their

relative importance, and selecting among the many different ways in which each com-

ponent can be modeled and can interact with its neighbors. Within the compositional

modeling framework, the different ways of modeling components and component in-

teractions are represented using model fragments and are stored in a model fragment

library. Models are constructed by composing an appropriate set of model fragments

from this library.

For example, Figure 2 shows some of the model fragments that can be used to

model the wire. The wire can be modeled as an electrical conductor, an electromagnet,

or an inductor. When it is modeled as an electrical conductor, it cain also be modeled

either as an ideal conductor or as a resistor. In the latter case, its resistance can

be modeled as being constant, or as being dependent upon its temperature. When

the wire is modeled as a resistor, it can also be modeled as a thermal resistor, which

models the heat generated in the wire due to current flow. Finally, as with most

other components, the wire can be modeled using various thermal, mass, and motion

models. Similarly, the wire and the bimetallic strip can interact with each other in

a number of ways: thermally (heat generated in the wire can cause the bimetallic

strip to heat up); magnetically (a magnetic field generated in the wire can cause the

bimetallic strip to be magnetized); and kinematically (translation or rotation of the

5

ideal-conductor

electrical-conductor _ resistor / constant-resistor

electromagnet _-_ temperature-dependent-resistor

Xa

wire inductor /_¢ elasl_c-wire _ thermal-resistor

expanding-wire Z__ thermally-expanding-wire

axiaUy-rotating-wire _ rigid-rotating-wire

---_ Possible model link torsion-spring

Figure 2: The possible models of a wire.

bimetallic strip causes the same motion in the wire).

The input to our model composition algorithm is the structure of the device (its

components and their interconnections), its expected behavior, and a library of model

fragments. The algorithm constructs an adequate device model that provides a causal

explanation for the expected behavior, and also models all significant phenomena.

Such an adequate model can be used to answer a variety of queries related to the

functioning of the device. The model composition algorithm constructs adequate

models based on the structural and behavioral context of the device, and its expected
behavior.

The structure of the temperature gauge, in conjunction with the model fragment

library, is instrumental in specifying the space of possible models. First, the com-

ponents specified in the structure delimit the space, since a device model consists

of zero or more models for each of its components. For example, any model of the

temperature gauge must include zero or more models of the thermistor, battery, wire,

etc. Second, the physical properties of the components delimits the possible ways

of modeling them. For example, the wire can be modeled as an electrical conductor

only because it is metallic. Third, the relations between the components specify the

possible interactions. For example, the wire and the bimetallic strip can interact

thermally only because of their relative locations.

The expected behavior determines the set of relevant model fragments that must

be part of the model. Since the resulting model must explain the functioning of the

temperature gauge, it must include the following component models. The thermistor

model must model the effect of its temperature on its resistance. Electrical models

are necessary for the wire and the battery, to explain the current flow in the circuit.

In addition, the wire must be modeled as a thermal resistor, to explain the generation

of heat. Similarly, the thermal properties of the bimetallic strip and the rotation of

the pointer must be modeled. The use of these component models is essential for

generating the above causal explanation. On the other hand, phenomena such as the

6

magnetic field generatedin the wire, the thermal propertiesof the battery, and the
massof the thermistor need not be modeled.

Consider now the electrical models selected for the wire and the battery in the

above model. From the point of view of generating the above causal explanation, it

is sufficient to model the wire as a constant resistance resistor, and the battery as

an ideal voltage source, i.e., the temperature dependence of the wire's resistance and

the battery's internal resistance need not be modeled. However, suppose that the

battery's internal resistance were comparable to the resistance of the wire and the

thermistor. To be broadly useful, an adequate models must include all significant

phenomena, so that the above model must model the battery's internal resistance.

Similarly, if the wire's temperature variation is significant, the temperature depen-

dence of its resistance becomes significant, and must be modeled. To test for signifi-

cance, we do not need the exact values of the parameters. It is sufficient to compare

their orders of magnitude, as engineers do when assessing the relevance of different

phenomena.

The resulting model of the temperature gauge satisfies the three important prop-

erties of an adequate model. First, it is able to explain the expected behavior, in

this case the functioning of the temperature gauge. Second, it includes all significant

phenomena. Third, it excludes all irrelevant phenomena, so that it is as simple as

possible.

3 Models and model fragments

Device models are formal, abstract descriptions of the device. Different types of device

models capture different aspects of the device: structural models describe the parts

of the device and how they are put together; behavioral models describe relations

between the device's physical attributes, and how these attributes values evolve over

time; functional models describe the overall purpose the device and the functional

roles of the device's parts that help achieve this purpose.

Our goal is to automatically construct behavioral device models from user-defined

structural and (partial) functional device models. Behavioral models are necessary to

explain how the device functions, to simulate its behavior over time, and to evaluate

its performance. Unlike structural models, which are often directly available from

CAD tools, and functional models, which are typically part of the design description,

behavioral models must be constructed. Adequate behavioral models must satisfy the

constraints imposed by the structure of the device and incorporate the phenomena

that describe its function. We view modeling as a cooperative venture between man

and machine: the user makes some initial modeling decisions by identifying device

components, providing a structural device model, and specifying the functions of in-

terest. The machine then constructs a behavioral model by making a complementary

set of modeling decisions. 1

1Henceforth, un]ess otherwise noted, we will use the term "model" to refer to behavioral models.

We describemodels of device behavior by sets of equations that relate sets of

device parameters. We focus on time-varying and equilibrium lumped parameter

models, which we represent using ordinary differential equations, algebraic equations,

and qualitative equations [3]. Different models are described by different sets of

equations. Models differ because they give different answers to the following two

questions:

• What physical phenomena are to be modeled? Models can differ because they

choose to model different physical phenomena.

• How are the chosen phenomena to be modeled? Models can differ because they

choose to model the same physical phenomena differently.

Since a device can be modeled in a variety of different ways, it is important to

represent the space of possible device models. We represent this space using model

fragments. A model fragment is a set of equations that partially describes some

physical phenomenon. A device model is constructed by composing a set of model

fragments, i.e., model fragments are the "building blocks" out of which models are
constructed.

Using model fragments to construct device models has three main advantages.

First, a set of model fragments is an implicit representation of an exponentially large

set of device models: any subset of this set of model fragments can be composed to

form a model. This representation, unlike the explicit representation of each model

[1], allows broad coverage of phenomena and scales up. Second, model fragments

are highly reusable, both in different models of the same device and in models of

different devices. Thus, the effort of constructing a library of model fragments can

be amortized over their use in a variety of different models. Third, as compared to

individual equations, model fragments are better building blocks of models because

not all phenomena can be conveniently represented by single equations.

Model fragments relate to each other in meaningful ways. For example, since

model fragments can describe different aspects of the same phenomena in different

ways, they can be approximations of each other or can be mutually contradictory.

Since model fragments can be partial descriptions of phenomena, they might have

to be considered jointly to completely describe a particular phenomenon. These

relations between model fragments are part of the domain knowledge and are essential

for effective model construction. They lead to more compact representations, focus

model search, and ease knowledge base building and maintenance.

We describe in detail the model fragments and the model fragment library orga-
nization next.

3.1 Model fragments

A model fragment is a set of independent equations that partially describes some

physical phenomenon at some level of granularity. Different model fragments can de-

8

scribedifferent phenomena,or canbedifferent descriptionsof the same phenomenon.

For example, the model fragment:

{vw= iwRw}

describes electrical conduction in a wire by modeling the wire as a resistor with voltage

Vw, current iw, and resistance Rw. The model fragment:

= 0}

describes the same phenomenon for the wire by modeling the wire as an ideal con-

ductor. Finally, the model fragment:

{lw= tw0(1+ w(Tw - Two))}

describes the temperature dependence of the wire's length, a completely different

phenomenon (lw is the actual length of the wire at temperature Tw, lw0 is the original

length of the wire at temperature Two, and aw is the coefficient of expansion of the

wire). Note that, in general, model fragments are only partial descriptions of phe-

nomena. For example, the first of the above three model fragments only specifies the

relation between the voltage (Vw) and the current (iw); it does not say anything about

the variation of the resistance of the wire. Additional model fragments describing the

resistor's resistance are necessary to complete this description.

To determine their activity, model fragments have associated with them applica-

bility conditions (also called operating conditions [9, 45] or quantity conditions [14]).

Applicability conditions determine when the equations associated with a model frag-

ment can be part of a device model. They are evaluated with respect to the current

device state; as the device state changes, the set of active model fragments can change.

In this paper, we concentrate on model selection within a single device state, thus as-

suming that the set of active model fragments is fixed. This set is simply identified by

evaluating all applicability conditions against the single device state. Techniques for

changing the set of active model fragments with changing device states are discussed

in [6, 15, 21].

The equations of a device model are constructed by composing the equations

of the model fragments in the model. For algebraic and differential equations, the

composition is a simple union of the equations in the model fragments. To combine

qualitative equations and expressions with special operators, e.g., direct (I±) and

indirect influences (aQ+) [14], we use a set of composition rules. Figure 3 shows the

model fragments, and the corresponding equations, comprising a model of the tem-

perature gauge of Figure 1. It includes model fragments for the components of the

temperature gauge (e.g., the wire wire-l) and for the component interactions (e.g.,

atmosphere-bms represents interactions between the atmosphere and the bimetal-

lic strip). The equation exogenous(Q) indicates that the value of Q is determined

exogenously (it can be viewed as a shorthand for the equation Q = c, for some con-

stant c). The equation M-(Q1, Q2) is a qualitative equation indicating a functional

dependence between Q1 on Q2 and the fact that when Q_ increases Q1 decreases [23].

(Constant-temperature atmosphere-I):

(Constant-temperature-model thermistor-I):

(Thermal-thermistor thermistor-I):

(Constant-voltage-source battery-I):

(Constant-resistance wire-l)

(Resistor wire-l):

(Thermal-resistor wire-l):

(Equilibrium-thermal-model wire-l):

(Thermal-bimetallic-strip bms-1):

(Equilibrium-thermal-model bms-1):

(Resistive-thermal-conductor atmosphere-bms):

(Resistive-thermal-conductor bms-wire):

Kirchhoff's laws:

Op: Pointer angle

Rw: Wire resistance

it: Thermistor current

i,,: Wire current

iv: Battery current

Tb: Bms temperature

To: Wire temperature

fb_: Heat flow (bins to atmosphere)

fo: Heat generated in wire

ezogenous(To)
ezogenous(T,)
Vt = itRt; M-(Rt, Tt)

ezogenous(V_)

exogenous(Ro)

Vo = ioRo

fo = Yoio
fob = fo
xb = k2Tb
f_, = fob
fa = k3(Tb- To)
fob = k4(To - Tb)
V_ = Yo + Vt; i,,=it;

8p = kl xb

xb: Bms deflection

Rt: Thermistor resistance

Vt: Thermistor voltage

Vo: Wire voltage

V_: Battery voltage

Ta: Atmosphere temperature

Tt: Thermistor temperature

fob: Heat flow (wire to bms)

k_: Exogenous constants

Figure 3: Model fragments and equations describing the temperature gauge

it = io;

3.2 The model fragment library and its organization

The model fragment library contains class level descriptions of model fragments, to-

gether with relations between these classes. The organization provides compact rep-

resentations, facilitates knowledge base construction and maintenance, and supports

efficient model fragment retrieval and generation of device models. The classes are

organized in several different ways:

• into a generalization hierarchy, capturing the subset relation between classes;

• into a possible models hierarchy, capturing alternative ways of modeling com-

ponents;

• into assumption classes, representing sets of mutually contradictory model frag-

ment classes;

• into an approximation hierarchy, capturing accuracy relations between classes;

10

• grouped into required assumptionclasses,indicating model fragment classes
that must be usedto completedescriptions;

In addition, model fragments are related to eachother by articulation axioms,
capturing the relationship between terms introduced by different model fragment
classes.We discusseachof the abovenext.

3.2.1 Model fragment classes

Model fragments are represented as classes; a component is modeled by a model

fragment by making it an instance of the corresponding class. For example, a wire,

wire-l, is modeled as a resistor by making it an instance of the Resistor class.

This modeling choice is represented by the literal (Resistor wire-:t), which also

denotes the corresponding model fragment. A component can be simultaneously

modeled by more than one model fragment simply by making it an instance of each

of the corresponding classes. For example, both the electrical and electromagnetic

properties of wire-1 can be modeled by simultaneously making it an instance of

Resistor and Electromagnet.

The model fragment library also contains class level descriptions of the components

that can be used to specify device structure. Component classes are similar to model

fragment classes, except for their use: component classes are selected by the user to

model objects; model fragment classes are automatically selected by the system.

Model fragment classes inherit properties to their instances. These properties

comprise the definitions of the phenomena being modeled by the model fragment

class. The two most important properties inherited to instances are attributes and

equations. The most common attributes are numerical attributes and terminals.

Numerical attributes are the parameters of the phenomena being modeled. Terminals

specify the ports through which components can interact with each other by sharing

parameters [9].

The equations that a model fragment class inherits to its instances are defined

using equation schemas. Equation schemas are exactly like equations, except that

parameters are replaced by terms such as (resistance ?object). Equation schemas

are instantiated for specific instances of the model fragment class by binding the

variable ?object to the instance and replacing the terms by the parameter resulting

from evaluating the term.

Figure 4 shows the Resistor model fragment class. The attributes clause spec-

ifies the resistance parameter for instances of Resistor. The :range specification

defines the type of this attribute. The equat ions clause specifies the relation between

the different parameters.

3.2.2 Generalization hierarchy

Model fragment classes are organized into a generalization hierarchy representing

the "subset-of" relation between classes. The generalization hierarchy supports in-

11

(defmodel Resistor

(attributes

(resistance

:range Resistance-parameter

:documentation "The resistor's resistance"))

(equat ions

(= (voltage-difference ?object)

(* (resistance ?object)

(current (electrical-terminal-one ?object)))))

(generalizations Electrical-conductor)

(possible-models Constant-resistance

Temperature-dependent-resistance

Thermal-resistor)

(assumption-class electrical-conductor-class)

(approximations Ideal-conductor

Ideal-insulator)

(required-assumption-classes resistance-class))

Figure 4: The Resistor model fragment class.

heritance, which facilitates knowledge base maintenance and reuse: (a) knowledge

represented with a class can be used both by direct instances of the class and by

instances of subclasses (specializations) of the class, thereby facilitating its reuse;

and (b) since knowledge needs to be represented only with the most general class to

which the knowledge is applicable, changes tend to be localized, thereby facilitating

knowledge base maintenance.

For example, the generalizations clause in Figure 4 states that the Electri-

cal-conductor class is a generalization of the Resistor class. Hence, any component

being modeled as a resistor is also modeled as an electrical conductor.

3.2.3 Possible models hierarchy

We represent the set of model fragments that can describe each component using a

possible models hierarchy. The possible models of a component or model fragment

class are the additional ways of modeling instances of that class. The transitive

closure of the possible models of a class is the set of all possible ways of modeling

instances of that class.

For example, Figure 2 shows part of the possible models hierarchy rooted at Wire.

The possible-models clause in Figure 4 specifies that instances of Resistor can also

be modeled as instancesof Constant-resistance, Temperature-dependent-resis-

tance, and Thermal-resistor.

12

(Ideal-conductor wire-l):
(Ideal-insulator wire-l):

(Resistor wire-l):

V,,, = 0

iw = 0

Vw = i,_R,_

Figure 5: Model fragments describing electrical conduction in a wire.

The generalization hierarchy and the possible models hierarchy often overlap. For

example, Resistor is both a specialization and a possible model of Electrical-con-

ductor. However, the two hierarchies are not the same. For example, the Ther-

real-thermistor model fragment class, which models the dependence of a thermis-

tor's resistance on its temperature, is a specialization of the Thermal-obj ect model

fragment class. However, not all components being modeled as Thermal-obj ects can

be modeled as Thermal-thermistors: only thermistors can be modeled as Ther-

real-thermistors. Hence, Thermal-thermistor is a specialization of Thermal-ob-

ject, but not a possible model of it.Similarly,Electrical-conductor isa possible

model of Wire but not a specializationof Wire.

The possible models hierarchy has advantages similar to the generalization hierar-

chy. First, it leads to compact representations. For example, we only need to specify
that instances of Wire can be modeled as an Electrical-conductor. The additional

ways of modeling instances of Wire are directly inferred from the hierarchy. Second, it

simplifies knowledge base maintenance. For example, adding a model fragment class

describing the dependence of resistance on length only requires changing the possible

models hierarchy below Resistor. Definitions of component and model fragment

classes above it, such as Wire, need not be modified.

3.2.4 Assumption classes

Different model fragments can be descriptions of different phenomena, or can be

different descriptions of the same phenomena. When model fragments describe the

same phenomena, they often make contradictory assumptions. We represent this

contradictory relation between model fragments by grouping mutually contradictory

model fragments into disjoint assumption classes. To avoid inconsistencies, consistent

models must include at most one model fragment from each assumption class. Hence,

assumption classes can be viewed as a modeling dimension along which some choice

needs to be made (including not selecting any model fragments from the assumption

class.)

For example Figure 5 shows three mutually contradictory model fragments de-

scribing electrical conduction in a wire: the ideal conductor model fragment assumes
that the resistance of the conductor is zero, the ideal insulator model fragment as-

sumes that the resistance of the conductor is infinite, and the resistor model fragment

assumes that the resistance of the conductor is non-zero and finite.

Note that the contradiction between model fragments in an assumption class can-

not, in general, be derived from the equations of the model fragments. For example,

13

the equations of the ideal conductormodel fragment and the ideal insulator model
fragment canbe simultaneouslysatisfiedwhenboth the current through a conductor
and the voltage drop acrossit arezero. However,thesemodel fragmentsaremutually
exclusivebecausetheir underlyingassumptionsarecontradictory. Assumptionclasses
capture this domain-dependentfact.

3.2.5 Approximation hierarchy

Domain experts can often specify that one model fragment is a more approximate

description of a phenomenon than another model fragment. This indicates that the

predictions made by the more accurate model fragment are "closer to reality" than

the predictions made by the more approximate model fragment. Typically, more

approximate descriptions are simpler to use than more accurate descriptions. Hence,

it is desirable to construct models that include all those approximations that do not

significantly affect accuracy.

We capture the approximation relation between model fragments by organizing

the model fragments within an assumption class into an approximation hierarchy.

For example, the approximat ions clause in Figure 4 specifies that Ideal-conductor

and Ideal-insulator are more approximate descriptionsof electricalconduction

than Resistor.

As with the contradictory relation, the approximation relation is a domain-de-

pendent relation that cannot be derived from the equations of model fragments. For

example, nothing in the ideal conductor model fragment indicates that it is an ap-

proximation of the resistor model fragment; it is a domain fact that must be recorded

explicitly by the knowledge engineer.

3.2.6 Required assumption classes

Since model fragments are partial descriptions of phenomena, additional model frag-

ments are sometimes required to complete their description. We represent the set of

model fragments that can be used to complete a description by associating with each

model fragment a set of required assumption classes; the description is completed by

including a model fragment from each required assumption class.

For example, the required-assumption-classes clause in Figure 4 shows that

a component being modeled as a Resistor must also be modeled using a model frag-

ment class that specifies Resistor-class as its assumption-class, viz. Constant-

-resistance or Temperature-dependent-resistance.

3.2.7 Articulation axioms

The attributes that a component inherits from different classes are often related to

each other. We use a set of rules to ensure that coherent device models incorporate all

such relations. These rules are analogous to articulation axioms introduced in [18].

14

For example, wire-I inherits the attributes wire-terminal-one and wire-ter-

minal-two, representing the two ends of the wire. When itismodeled as an Electri-

cal-conductor it also inherits the attributes electrical-terminal-one and elec-

trical-terminal-two, representing the two ends of the electrical conductor. The

following rule captures the fact that the two ends of the wire are the two ends of the

electrical conductor:

(implies

(and

(Wire ?object)

(Electrical-conductor ?object)

(wire-terminal-one ?object ?terml)

(wire-terminal'two ?object ?term2))

(and

(electrical-terminal-one ?object ?terml)

(electrical-terminal-two ?object ?term2)))

This ensures that components connected to the ends of wire-1 will be able to elec-

trically interact with it.

4 Adequate models

For any given device, a large number of behavioral models can be assembled from

model fragments. The right model is determined by the task for which the model is

to be used and the context in which the device operates. For example, to analyze the

performance of the temperature gauge in Figure 1 during the final stages of detailed

design, it is necessary to include complex non-linear differential equations describing

the dependence of the thermistor's resistance on its temperature. However, a simple

qualitative current/no current model, explicitly tailored for troubleshooting, is suf-

ficient for determining why the pointer does not move when the water temperature

rises.

In this paper, we focus on the task of causally explaining the functioning of a

device. Device functioning is represented by the input/output causal dependencies

enforced by the device; causal explanations for these dependencies are generated using

causal ordering on the equations of the model. This task focus determines the set of

relevant phenomena that must be included in an adequate model. The device context

is defined by the device's structure and behavior. The structural context is defined

by the device's components, their physical and structural properties, and structural

relations between them describing how they are put together to form the device.

Together with the model fragment library, it defines the space of possible models and

provides constraints that guarantee structurally coherent models. The behavioral

context is defined by the values, and the variations over time of the values, of the

15

physical parameters used to model the device. It provides constraints that ensure

that all significant phenomena are modeled with applicable approximations.

Regardless of the task and the context, any device model must also be consistent,

complete, and parsimonious. Model consistency is enforced by ensuring that models

do not contain mutually contradictory fragments. Model completeness is enforced by

ensuring that models include complete descriptions of all modeled phenomena, i.e.,

model fragments from all required assumption classes are included. Model parsimony

is enforced by ensuring that only the relevant phenomena are modeled in the simplest

possible way. We say that a model is simpler (or more parsimonious) than another if

it either models fewer phenomena or does so more approximately.

In summary, an adequate model must satisfy the following criteria:

• Task adequacy: the model causally explains the function of the device

• Contextual adequacy: the model is consistent with context-dependent struc-

tural and behavioral constraints

• Model consistency: the model does not contain mutually contradictory model

fragment

• Model completeness: the model contains a model fragment for each required

assumption class

• Model parsimony: the model is the simplest model that satisfies the above

criteria

Model consistency and model completeness are straightforward. We describe task

focus, structural and behavioral contextual adequacy, and model parsimony in detail

next.

4.1 Task focus: expected behavior

We define model adequacy with respect to the task of generating parsimonious causal

explanations for the functioning of a device. The function of a device is an abstract

description of what the device does; the causal explanation generated by an adequate

model is a description of how this function is achieved. The most common functional

descriptions are input/output descriptions of device behavior, and correspond to the

primary function of the device. Knowledge of device function is commonplace and

almost always available either directly from the user, from the description of the

problem to be solved, or from the context in which the device operates. For example,

the primary function of the temperature gauge in Figure 1 is to measure temperature,

so that an adequate model must explain how the thermistor's temperature determines

the angular position of the pointer.

16

Wespecifydevicefunction usingcausalrelationsbetweenparametersthat must be
explainedby an adequatedevicemodel. We call suchrequiredcausalrelations the ex-
pected behavior of the device. For example, the expected behavior of the temperature

gauge, representing its primary function, is:

(causes (temperature thermistor-l)

(angular-position pointer-l))

which states that an adequate device model must explain how the temperature of the

thermistor causally determines the angular position of the pointer.

We test if a model satisfies the expected behavior by generating the causal ordering

of the parameters of the model, using the equations of the model [9, 14, 22, 19,

37, 45]. The causal ordering identifies causal dependencies between the parameters

of the model, and hence can be directly used to check if the model explains the

expected behavior. Figure 6 shows the causal ordering generated from the equations

of the model in Figure 3. It shows that the pointer's angular position (0p) is causally

dependent on the thermistor's temperature (Tt). Hence, this model explains the

expected behavior discussed above.

The expected behavior is a useful characterization of device function. It can also

be checked efficiently using the causal ordering algorithm described in [35]. More

expressive descriptions of device function, though potentially desirable, are difficult

or even impossible to verify. For example, a more expressive description such as "an

increase in Tt causes a linear increase in 8p" is difficult to verify in the presence of

non-linear equations and competing influences.

4.2 Structural context

The structural context is defined by the components of the device, their physical and

structural properties, and their structural relations. The user models the structure of

the device by selecting components from the component types in the model fragment

library and by specifying their properties and the structural relations between them.

The structural context provides the basis for model construction by defining the space

of possible component models and their interactions.

Figure 6: The causal ordering generated from the model in Figure 3. Bracketed

parameters are determined simultaneously.

17

The particular choice of components in the library, their properties, and the pos-
sible structural relations reflects the domain of interest and defines the most de-

tailed level of granularity that needs to be considered. For example, in the electro-

mechanical domain, the components of interest include wires, batteries, magnets,

and springs. The physical and structural properties include shape, dimension, mass,

and material composition. Structural relations, which describe how components are

put together, include connected-to, indicating that two component terminals are

connected to each other [9], coiled-around, indicating that a wire is coiled around

a component, meshed indicating that a pair of gears mesh with each other, and

immersed-in, indicating that a component is immersed in a fluid. These structural

relations determine how components may interact, e.g., the connected-to relation

supports electrical, thermal, and kinematic interactions between components.

Note that the structural context of a device can change during the operation of the

device. It changes as new components axe created and old ones are destroyed (e.g.,

boiling water becoming steam), as the physical properties of components change (e.g.,

demagnetizing the magnetic strip on a credit card), or as structural relations between

components change (e.g., the intermittent contact between the hammer and the dome

of an electric bell).

To ensure structurally coherent device models and to model structural context

changes, we associate structural constraints with model fragment classes. These con-

straints state that a component can be modeled by a model fragment class only if

it satisfies all the structural constraints associated with that class. We distinguish

between two types of constraints: structural preconditions and structural coherence

constraints.

Structural preconditions are necessary constraints on the structural context that

must be satisfied if a component is to be modeled by the model fragment class. For

example the precondition:

(and (composition ?object ?material)

(metal ?material))

in the Electrical-conductor model fragment class indicates that a component must

be metallic for it to be modeled as an Electrical-conductor. Structural precondi-

tions are similar to process preconditions in QP theory [14], except that structural

preconditions are necessary conditions, while process preconditions are sufficient con-
ditions.

Structural coherence constraints restrict the model fragment classes that can be

used to model a set of structurally related components. For example, the constraint:

(implies

(and (Wire ?object)

(coiled-around ?object ?core)

(magnetic-material ?core))

(Magnet-class ?core))

18

associated with the Electromagnet model fragment class specifies that a wire coiled

around a core made of magnetic material can be modeled as an electromagnet only

if the core is also modeled as a magnet (i.e., by a model fragment class in the

Magnet-class assumption class). This is because the core amplifies the wire's mag-

netic field by three or four orders of magnitude, converting the core into a powerful

magnet. Without this amplification, the magnetic effect is considered negligible.

4.3 Behavioral context

The behavioral context of a device is defined by the values of the physical param-

eters used to model the device. The behaviorM context changes over time, as the

parameter values change over time. For example, the behavioral context of the tem-

perature gauge in Figure 1 includes the values for the current flowing in the circuit,

the magnetic field generated by the wire, and the angular position of the pointer.

Because the behavioral context is defined by parameter values, it can only be

computed from the model equations after a device model has been selected (actual

parameter values on a physical prototype are typically unavailable). Since differ-

ent device models make different modeling assumptions, and hence produce different

parameter values, we must ensure that errors introduced by the different modeling

assumptions are acceptable. To ensure that models have an acceptable accuracy, we

introduce two types of domain-dependent behavioral constraints: behavioral precon-

ditions, indicating which approximations are acceptable, and behavioral coherence

constraints, indicating which phenomena are significant.

Behavioral preconditions are constraints associated with model fragment classes

that must be satisfied if a component is to be modeled by that model fragment class.

They specify necessary conditions under which an approximate model fragment class

can model a component. For example, the behavioral precondition:

(< (voltage-difference ?object)

(voltage-difference-threshold ?object))

associated with the Ideal-conductor model fragment class indicates that a compo-

nent can be modeled as an ideal conduct, rather than more accurately as a resistor,

only if the voltage drop across it is less than some threshold. Behavioral preconditions

are similar to process quantity conditions in QP Theory [14]. However, behavioral

preconditions are modeling constraints used to decide which model fragment classes

in an assumption class can model a component, while quantity conditions control the

activity of a process, and are about the physics of the situation.

Behavioral coherence constraints, like structural coherence constraints, constrain

the model fragment classes that can model a set of related components. They ensure

that device models include all significant phenomena. For example, the constraint:

19

(implies

(>= (* (voltage-difference ?object)

(current (electrical-terminal-one ?object)))

(electrical-power-threshold ?object))

(Thermal-resistor-class ?object))

in the Resistor model fragment class specifies that when the power dissipation of a

component modeled as a resistor exceeds a prespecified threshold, this power dissipa-

tion is deemed significant and must be explicitly modeled by adding a model fragment

class from the Thermal-resistor-class assumption class to the wire model.

Parameter thresholds, such as the electrical power dissipation threshold in the

previous example, play a central role in determining the significance of phenomena,

and the applicability of approximations. Depending on the situation, thresholds can

either be preset or computed dynamically. Preset thresholds can be derived from

physics, such as the Reynolds number in fluid dynamics indicating when laminar flow

becomes turbulent, or can be set by an engineer depending on the application. For

example, voltage differences of up to 10 volts can be considered insignificant in a power

distribution system, while voltage differences of only up to .01 volts can be considered

insignificant in an electronic circuit. Thresholds can also be set dynamically, based on

knowledge of acceptable error tolerances on parameters. The error tolerances can be

propagated, via a set of rules or through the model equations, to set other thresholds

[27, 36].

4.4 Model parsimony

Model parsimony guarantees that only relevant phenomena are modeled in the sim-

plest possible way. To compare models, we establish a partial order between models

based on the intuitions that a model is simpler if it models fewer phenomena, and that

approximate descriptions are simpler than more accurate ones. Hence, we say that

model M2 is simpler than model M1 if and only if for each model fragment m2 6 M2

either (a) m2 6 M1; or (b) there is a model fragment ml 6 M1 such that m2 is an

approximation of ml.

For example, a model simpler than the temperature gauge model in Figure 3

ignores the wire's heating properties by removing the model fragment (Thermal-re-

sistor wire-l). A more complex model takes into account the thermal proper-

ties of the wire's resistance by replacing the model fragment (Constant-resistance

wire- 1) with the more accurate model fragment (Temperature-dependent-resis-

t or wire- 1). An incomparable model results from both removing (Thermal-resi s-

tor wire-l) and replacing (Constant-resistance wire-l) by (Temperature-de-

pendent-resistor wire-l).

Note that the definition of model simplicity does not necessarily guarantee that

simpler models will be more efficient to simulate or will produce simpler causal ex-

planations than more complex ones. However, it is a good heuristic for identifying

20

computationally efficient models and for generating parsimonious causal explanations

because it follows common engineering practice which simplifies models by disregard-

ing irrelevant phenomena and by using all applicable approximations.

5 Finding adequate models

Given a device description, its expected behavior, and a library of model fragments,

we construct an adequate model by composing a set of model fragments describing the

device's components and their interactions. Despite the focus and constraints imposed

by the causal explanation task, finding an adequate model is intractable--in the worst

case, we must consider exponentially many combinations of model fragments before

finding an adequate model. Nayak [29, 28, 31] formally shows that the problem is

NP-hard and identifies three sources of intractability: (a) deciding which assumption

classes to include in the model; (b) deciding which model fragments to choose from

selected assumption classes; and (c) satisfying the structural and behavioral coherence

constraints.

Deciding which assumption classes to include in the model does not appear to

be intractable in practice, so we do not address it. We address the second source of

intractability by requiring that all the approximation relations between model frag-

ments in the model fragment library (Section 3.2.5) must be causal approzimations

[29, 28, 31]. An approximation relation between two model fragments is said to be

a causal approximation if the more approximate model fragment contains equations

with fewer parameters than the more accurate model fragment, so that the more ap-

proximate model fragment explains less about the phenomenon. Since simpler models

contain more approximations, it follows that when all approximations are causal ap-

proximations, the causal relations entailed by a model decrease monotonically as

models become simpler. Hence, if a model does not explain the expected behavior,

neither does any simpler model. This property allows us to focus on a small number

of model fragment combinations.

We address the third source of intractability by restricting the expressivity of

coherence constraints. In particular, we require that the coherence constraints be

like horn clauses, except that the consequent requires that a component be modeled

using any model fragment class from an assumption class, rather than a specific

model fragment class, i.e., the consequent is the disjunction of the model fragments

in an assumption class. We also assume that if a model satisfies all the coherence

constraints, then any consistent simpler model that uses model fragments from the

same assumption classes also satisfies the constraints. These restrictions ensure that

a model can be simplified efficiently: if a model satisfies the coherence constraints

then a simpler model produced by replacing a model fragment by an approximation is

guaranteed to satisfy the coherence constraints. Model simplification is a key step in

our model composition algorithm. These restrictions have not proved to be significant,

since our definition of model adequacy is primarily driven by the expected behavior,

21

not the coherenceconstraints. For a completeanalysis,see[28].
We find anadequatemodelby first identifying an initial model that satisfiesall the

model adequacycriteria with the exception of model parsimony. We then simplify
this initial model until none of its immediate simplifications explains the expected
behavior. The useof causalapproximationsensuresthat the resulting model is ad-
equate, while the restriction on the coherenceconstraints ensuresthat simplification
is efficient.

We construct the initial model in five steps. First, we augment the initial de-
vice description to include all expectedbehavior parameters. Second,we augment
the device model using the structural coherenceconstraints and a set of component

interaction constraints. These constraints ensure that every component interaction

that can possibly take place is included in the model. Third, we generate the device

behavior based on the current choice of model fragments using a logarithm-based

order of magnitude reasoning technique. Fourth, we augment the device model using

the behavioral coherence constraints and examine the resulting device model. If the

model does not explain the expected behavior, we further augment it in the fifth step

by choosing alternate model fragments. We repeat these steps until an initial model is

found. We then simplify the initial model by attempting to replace model fragments

with one of their approximations or by dropping them altogether.

Our model composition algorithm has three main advantages over earlier ap-

proaches [13, 31]. First, it avoids producing the most accurate initial model, sig-

nificantly speeding up model simplification. Second, it uses an efficient order of

magnitude reasoning technique that is at the right level of detail for the task, striking

a balance between qualitative and quantitative techniques. Third, unlike [13], it has

a guaranteed polynomial time complexity.

The remaining of this section briefly summarizes causal approximations, order of

magnitude reasoning, introduces component interactions constraints, and describes

the model composition algorithm in detail.

5.1 Causal approximations

To make the model fragment selection tractable, we require that all approximations

in the model fragment library be causal approximations. The key idea underlying

the definition of causal approximations is that approximate descriptions often use

fewer parameters than more accurate descriptions. As a result, more approximate

descriptions explain less about a phenomenon than more accurate descriptions. Us-

ing this observation, we define causal approximations as follows: every equation in

the more approximate model fragment must have a corresponding equation in the

more accurate model fragment which uses a superset of parameters. Hence, when all

approximations are causal approximations, simpler models contain fewer parameters

and explain less than more complex models, i.e., the causal relations entailed by a

model decrease monotonically as models become simpler. A rigorous analysis of the

properties of causal approximations is found in [28, 31].

22

A central property of monotonically decreasingcausalrelations is that if a model
doesnot explain the expectedbehavior, no simpler model can. Hence,an adequate
model can be identified in two steps: (a) identify a model that explainsthe expected
behavior; and (b) simplify the modelasmuchaspossible,until noneof the immediate
simplifications of the model can explain the expectedbehavior. The monotonicity
of the causal relations assuresus that the resulting model is an adequatemodel.
Modeling the different aspectsof the physical world with causal approximations is
not a limitation. It is both natural and commonplacein physics and engineering
textbooks.

To illustrate the monotonicity of causalrelations, considerthe model fragments
in Figure 7, with (Constant-resistance wire-l) an approximation of (Temper-
ature-dependent-resistance wire-l). Note that this approximation is also a
causal approximation, sincethe parameter in ezogenous(Rw) is also used in R_o =

Rw0 + aw(Tw - Too). The model in Figure 3 uses the model fragment (Constant-re-

sistance wire-l), and Figure 6 shows the corresponding causal ordering. Consider

replacing (Constant-resistance wire-l) in this model by (Temperature-depen-

dent-resistance wire-i). Figure 8 shows the causal ordering generated from this

more complex model. The causal relations entailed by this causal ordering are a su-

perset of the causal relations entailed by the causal ordering in Figure 6: there are

three more parameters, T,_0, Rw0 and aw, causally related to Rw and a new causal link

from Tw to R,o in the new model. Many additional examples of causal approxima-

tions, such as elastic collisions, frictionless motion, and ideal gas laws are described

in [28, 31].

5.2 Order of magnitude reasoning

Generating the behavior of the device during model construction is necessary to eval-

uate the behavioral constraints and to determine the significance of different physical

phenomena. The equations in a device model can seldom be solved in closed form.

Hence, the most widely used techniques for solving a set of lumped-parameter equa-

tions are numerical and qualitative methods. Numerical methods require exact values

for exogenous parameters, which are not always available, and can be unstable, inef-

ficient, or converge to the wrong solution. Qualitative methods, which consider only

parameter signs [3, 44], lack the discriminatory power to estimate the significance

(Constant-resistance wire-l) : exogenous(Rw)

(Temperature-dependent-resistance wire-l): Rw = Rwo + c w(T, - Two)
exogenous(Rwo)
e ogenous(aw)
exogenous(Two)

Figure 7: Model fragments for the wire's resistance.

23

Figure 8: The causal ordering generated from the model resulting from re-

placing (Constant-resistance wire-I) by (Temperature-dependent-resistance

wire-i) in Figure 3

of phenomena and can lead to ambiguity. Order of magnitude reasoning strikes a
balance between these two extremes.

We use the order of magnitude reasoning technique embodied in a program called

NAPIER[30]. NAPIER defines the order of magnitude of a quantity on a logarithmic

scale and uses a set of rules to propagate orders of magnitude through equations.

It handles non-linear simultaneous equations and uses approximation techniques to

make the computation tractable and efficient. We use the parameter orders of magni-

tude computed by NAPIER to determine the relative orders of magnitude of parame-

ters, which allows us to determine the phenomena that are significant and worth mod-

eling. In particular, we use the computed orders of magnitude to evaluate behavioral

preconditions and coherence constraints. These determine which model fragments

should or should not be part of the device model.

Following is a brief description on NAPIER's operation (see [30] for a detailed

account). NAPIER defines the order of magnitude of a parameter q (denoted ore(q))

as an interval on a logarithmic scale:

om(q) = [log b IqlJ (I)

where the base, b, of the logarithm is chosen to be the smallest number that can be

considered to be "much larger" than 1 (we use b = 10 in this paper). NAPIER uses

a set of rules to propagate orders of magnitude through equations. The orders of

magnitude are propagated through the equations in two steps. First, a set of rules

convert each equation into a disjunction of sets of linear inequalities. For example,

the equation

q3 = ql * q2

is converted into the set of linear inequalities (in this case, a single disjunct):

{om(ql) + ore(q2) < om(q3),om(q3) < om(q_) + om(q2) + 1}

The result of this conversion is a disjunctive logic program. Second, the program

solves this disjunctive logic program using linear programming and backtracking.

24

Since solving the disjunctive logic program is, in general,NP-hard, NAPIERusesa
heuristic method basedon causalordering. This heuristic method is fast and does
not appear to lose accuracy in practice. For example, NAPIERsolvesa set of 163
equations in only 21 secondson a TexasInstruments Explorer II workstation, with
no lossof accuracy[30].

To illustrate howordersof magnitudeareusedin modelselection,considermodel-
ing a wire through which current is flowing. Supposethat NAPIERhaspredicted that
the order of magnitude of the current through the wire is -1 (severaldeciamperes),
and that of the voltage acrossthe wire is 0 (severalvolts). To determine if the
heat generatedin the wire is significant and must be modeled,recall the behavioral
coherenceconstraint in Section4.3:

(implies

(>= (* (voltage-difference ?object)

(current (electrical-terminal-one ?object)))

(electrical-power-threshold ?object))

(Thermal-resistor ?object))

where the order of magnitude of the electrical power threshold is -1 (several deci-

watts). Following the previous order of magnitude rule, the order of magnitude of the

product of the current and the voltage is between -1 and 0, which is greater than

or equal to the electrical power threshold. This indicates that the heat generated by

the wire is significant and should be modeled as a Thermal-resistor.

5.3 Component interaction heuristic

To focus the search for initial adequate models, we introduce the component inter-

action heuristic. Components can only interact with each other if the components

are related by the structural relations that support the interaction and the compo-

nent models are compatible with the interaction. For example, two wires can interact

electrically only if they are connected to each other and if they are both modeled as

electrical conductors. The heuristic requires that if a set of components are related

by one or more structural relations that support an interaction, and if one of the

component models is compatible with this interaction, then the remaining compo-

nent models must be augmented to be compatible with this interaction. This allows

the components in the set to interact with each other via that interaction. Note

that if none of the component models is compatible with the interaction, then no

augmentations are necessary.

While we require the initial model to satisfy the additional constraints imposed

by this heuristic, the final adequate model need not satisfy them. The interactions

might eventually be discarded because they may be too weak to be worth modeling

or may not be relevant in explaining the expected behavior.

25

We implement the componentinteraction heuristicwith aset of constraints. Each
constraint specializesthe heuristic for a particular interaction andstructural relations.
For example, the constraint:

(implies

(and (terminals ?object ?terml)

(voltage-terminal ?terml)

(connected-to ?term1 ?term2)

(terminal-of ?term2 ?comp2))

(electrical-component ?comp2))

in the electrical-component model fragment class says that if a component is being

modeled as an electrical-component, and one of the component's voltage terminals

is connected to a terminal of another component, then the other component must

also be modeled as an electrical-component. This allows the two components to

interact by sharing voltages at the connected terminals. We require the initial model

to satisfy all the component interaction constraints.

5.4 Model composition algorithm

Figure 9 shows the algorithm for finding a device model that explains the expected

behavior of a device. The inputs to the algorithm are:

• the structure of the device: its components, their physical and structural prop-

erties, and the structural interconnections between them;

• the expected behavior of the device;

• orders of magnitudes of thresholds and exogenous parameters; and

• an optional set of model fragment classes preselected for each component, cor-

responding to modeling decisions made by the user.

• the library of model fragments organized as described in Section 3.

The algorithm starts by identifying all possible component interaction paths with

a set of rules (step 0 in the flowchart). The paths are modeled with additional device

components and are treated exactly like the original components by the remaining

steps in the algorithm.

The rest of the algorithm has six steps. All but step three (generate behavior)

and step six (simplify model) can modify the device model by adding one or more

model fragments to it. When a model fragment is added to the device model, the

most accurate model fragment from every assumption class required by the model

fragment is also added to the model. Thus, at the end of every step, the device model

always contains a model fragment from all required assumption classes.

26

Input)

0. Identify component I
|

interaction paths I

1. Include expected

behavior parameters

Enforce heuristic & structural

coherence constraints

Yes

13. Generate behavior I

4. Enforce behavioral

coherence constraints

model chan
Yes

,ehavidr satisfied? No

Yes

[6. Simplify model [

Adequate-'_

model

5. Augment
device model

Figure 9: Model composition algorithm

In the first step, the algorithm checks if the input device model contains all ex-

pected behavior parameters. If a component parameter is missing, the algorithm

searches the possible models hierarchy rooted at that component for a model flag-

27

ment class that provides the required parameter and whose structural preconditions

are all satisfied. The resulting model fragment class is added to the component's

model. When several model fragment classes satisfy the above condition, we pre-

fer (a) more general model fragment classes over more specific ones to ensure that

minimal modeling commitments are made; (b) only most accurate model fragment

classes, i.e., only model fragment classes that are not approximations of any other

model fragment class (this is necessary because we cannot determine the applicability

of approximations by evaluating behavioral preconditions since the behavior has not

been generated).

In the second step, the program checks the structural and component interaction

constraints of each component model. An unsatisfied constraint indicates that the

component model does not include a required model fragment. The algorithm then

searches the possible models of that component for a model fragment class that, when

added to the component model, would satisfy the violated constraint. As before, the

algorithm only considers most accurate model fragment classes whose structural pre-

conditions are satisfied. The component model is augmented with the resulting model

fragment class. This step is repeated until all structural and component interaction
constraints are satisfied.

In the third step, the algorithm uses the current device model to generate the

device behavior using NAPIER. NAPIER computes the orders of magnitudes of all

parameters from the exogenous parameter values provided as input by the user.

In the fourth step, the algorithm uses the behavior generated above to enforce

all the behavioral coherence constraints. This step is exactly analogous to the way

structural coherence constraints were enforced in the second step. If there are any

changes to the device model, the algorithm loops back to the second step, to ensure

that all the structural and heuristic coherence constraints continue to be satisfied. The

algorithm loops through steps two, three, and four, until all structural, behavioral,

and component interaction constraints are satisfied.

Once all these constraints are satisfied, the algorithm checks to see if the resulting

model can explain the expected behavior. This check is done by generating the

causal ordering of the model parameters using the efficient causal ordering algorithm

presented in [35]. Using simple graph traversal, the algorithm then checks whether

the causal ordering can explain the causal relations required by the expected behavior.

If the expected behavior is explained by the causal ordering, the algorithm proceeds

to the sixth step. Otherwise, it proceeds to the fifth step.

In the fifth step, the algorithm augments the device model with the alternate

model fragment classes identified in the earlier steps. These alternatives are either

model fragment classes that are more specific than those chosen earlier, or other

most general model fragment classes that could have been, but were not, selected.

The algorithm then loops back to the second step, until a model that explains the

expected behavior is found. If all possible ways of augmenting the device model

are exhausted, then the algorithm reports that the expected behavior cannot be

explained. This is justified because the component interaction heuristic guarantees

28

that the component models used in the final device model cannot interact with any

other components, and hence no augmentation of the device model can lead to a

model that explains the expected behavior.

The sixth and last step is model simplification. The initial model produced by the

previous steps can be more complex than necessary for one of three reasons: (a) for

each required assumption class, we added in the most accurate model fragment, even

though a more approximate model fragment might do; (b) model fragments added

to satisfy the component interaction constraints are not strictly necessary; and (c)

unnecessary model fragments may have been added in step five.

We simplify the initial device model by applying one of the following two simplifica-

tion operators: (a) replace a model fragment by one of its immediate approximations;

and (b) remove a model fragment. The algorithm simplifies the model by repeatedly

applying the simplification operators while ensuring that all structural and behavioral

constraints are satisfied and that the expected behavior can be explained. When all

immediate simplifications of a model are unable to explain the expected behavior, the

program terminates, and returns that model as an adequate model. It also generates

a causal explanation for the expected behavior using causal ordering as described ear-

lier. Note that the application of different sequences of simplification operators can

result in different models. However, the different models differ in features deemed to

be insignificant by the behavioral constraints and thresholds, and hence the program

returns the first adequate model it finds.

The number of device models constructed by the above algorithm is linear in

the number of model fragments. In particular, steps 1-5 only modify the model by

adding zero or more model fragments. Since only consistent models are constructed,

these steps can add at most one model fragment from each assumption class. Hence,

the number of models constructed by this part of the algorithm is bounded by the

number of assumption classes. Since the assumption classes are disjoint, it follows

that the number of assumption classes, and hence the number of models constructed

in steps 1-5, is bounded by the number of model fragments. Step 6 simplifies the

initial model by either dropping a model fragment or by replacing a model fragment

by one of its approximations. In either case, once a model fragment has been removed

from the model, it is never reconsidered. Hence, the number of models constructed

by step 6 is bounded by the total number of model fragments. Hence, the number of

device models constructed by the above algorithm is linear in the number of model

fragments.

5.5 Example: modeling the temperature gauge

We now illustrate the above algorithm on the temperature gauge in Figure 1. Part

of the input, describing the components and their component classes, is shown in the

first two columns of Table 1. The last four rows show the components added by the

algorithm to model component interaction paths in step zero. For example, bins-wire

is a possible interaction path between bins-1 and wire-l, corresponding to wire-1

29

being co iled-around bms- 1.

In the first step, the expected behavior of the temperature gauge:

(causes (temperature thermistor-l)

(angular-position pointer-l))

requires a temperature parameter for the thermistor and an angular-position

parameter for the pointer. The former can be achieved by modeling the thermis-

tor either as a Thermal-object or as a Thermal-thermistor. The algorithm uses

Thermal-object since it is more general. Similarly, the pointer is modeled as a

Rotating-object. Finally, Dynamic-thermal-model is added to the thermistor

model, since it is the most accurate model fragment class of the assumption class

required by Thermal-object} The resulting model is shown in the third column of

Table 1.

In the second step, because the pointer is a Rotating-object that is connected

to the free end of the bimetallic strip, a component interaction constraint requires a

kinematic interaction between pointer-1 and bins-1. This constraint can be satis-

fied by modeling the bimetallic strip as a Thermal-bimetallic-strip, which models

the deflection of the free end of the bimetMlic strip as a function of its tempera-

ture. As a consequence of this modeling decision, another component interaction con-

straint requires a thermal interaction between bms-1 and both wire-1 (via bms-wire)

and atmosphere-1 (via atmosphere-bins), so that wire-i and atmosphere-I are

modeled as Thermal-obj ects and bms-wire and atmosphere-bins are modeled as

2We willnot mention these requiredassumption classaugmentations in the restof the example.

Component Component classes A_er step 1 A_er step 2

thermistor-1 Thermistor Thermal-obj ect Thermal-obj ect

Dynamic-t hermal-model Dynamic-thermal-model

pointer-I Pointer Rotating-object Rotating-object

Thermal-object

Dynamic-thermal-model

bms-1 Bimetallic-strip Thermal-bimetallic-strip

Dynamic-thermal-model

wire-I Wire Thermal-object

Dynamic-thermal-model

battery-1 Battery Thermal-object

Dynamic-thermal-model

atmosphere-I Atmosphere Thermal-object

Dynamic-thermal-model
bms-wire Coil-structure Resistive-thermal-conductor

atmosphere-pointer Immersion-structure Resistive-thermal-conductor

atmosphere-bms Immersion-structure Resistive-thermal-conductor

atmosphere-battery Immersion-structure Resistive-thermal-conductor

Table 1: Components and their initial models.

3O

Resistive-thermal-conductors. Modeling atmosphere-1 as a Thermal-object

requires that all objects immersed in it must also have thermal models. The resulting
device model is shown in the fourth column of Table 1.

In the third step, the algorithm uses NAPIER to generate the behavior, and then

proceeds to check the behavioral coherence constraints in the fourth step. None of

these constraints are currently violated, so we now have a device model that satis-

fies the structural, behavioral, and component interaction constraints. However, the

expected behavior is not satisfied, so the algorithm proceeds to the fifth step.

Recall that an alternate way of providing the temperature parameter to ther-

mistor-1 was to model it as a Thermal-thermistor. Hence, the fifth step augments

the thermistor model with this model fragment class, and returns to the second

step. Since Thermal-thermistor is an electrical model, a component interaction

constraint requires an electrical interaction between the thermistor and the wire and

battery. This is achieved by modeling the wire as a Resistor, and the battery as

a Voltage-source-with-resistance. The resulting model is used to generate the

behavior, which includes calculating the wire's voltage and current. The behavioral

coherence constraint:

(implies

(>= (* (voltage-difference ?object)

(current (electrical-terminal-one ?object)))

(electrical-power-threshold ?object))

(Thermal-resistor ?object))

requires that the wire must be modeled as a Thermal-resistor, since the product of

the wire's voltage and current exceeds its electrical-power-threshold. With this

augmentation all the structural, behavioral, and heuristic constraints are satisfied,

and the expected behavior explained. The resulting initial model is shown in the

second column of Table 2.

In the sixth step the initial model is simplified by approximating and dropping

model fragments. For example, in the initial model the battery is a Voltage-source-

-with-resistance. However, the internal resistance of the battery is very small, so

that the approximation Constant-voltage-source is applicable. Similarly, wire-l's

resistance can be assumed to be constant, rather than temperature dependent. The

simplification process also determines that the thermal properties of pointer-1 and

bat t ery-1 are irrelevant, and hence it drops the corresponding model fragment classes

from the model. The adequate model, resulting from this simplification process, is

shown in the third column of Table 2. 3

3This column includes model fragments that only provide parameters, but do not directly intro-
duce equations into the model (e.g., (Rotating-objoct pointer-l)). Hence, the model fragments
in this column are a superset of the model fragments listed in Figure 3.

31

Component I Initial Model Adequate Model

thermistor- 1 Thormal-obj ect Thermal-obj oct
Dynamic-thermal-model Constant-temperature-model

Thermal-thermistor Thermal-thermistor

point er- 1 Rot ating-obj ect Rot ating-obj ect

Thermal-obj ect

Dynamic-thermal-model

bms-1 Thermal-bimetallic-strip Thermal-bimetallic-strip

Dynamic-thermal-model Equilibrium-thermal-model

wire-I Thermal-object

Dynamic-thermal-model

Electrical-conductor

Resistor

Temperature-dependent-resistance
Thermal-resistor

Thermal-object

Equilibrium-thermal-model

Electrical-conductor

Resistor

Constant-resistance

Thermal-resistor

battery-1 Thermal-object

Dynamic-thermal-model

Voltage-source Voltage-source

Voltage-source-with-resistance Constant-voltage-source

atmosphere-I Thermal-object Thermal-object

Dynamic-thermal-model Constant-temperature-model

bms-wire Resistive-thermal-conductor Resistive-thermal-conductor

atmosphere-pointer Resistive-thermal-conductor

atmosphere-bms Resistive-thermal-conductor Resistive-thermal-conductor

atmosphere-battery Resistive-thermal-conductor

Table 2: The initial and adequate model.

6 Implementation and results

We have implemented the model composition algorithm in Common Lisp and tested

it on a variety of electromechanical devices. This section presents the results of the

implementation.

We constructed a library of 20 different types of components, such as wires,

bimetallic strips, springs, and permanent magnets. The library consists of approxi-

mately 150 different types of model fragment classes including descriptions of elec-

tricity, magnetism, heat, elasticity, and the kinematics and dynamics of fixed-axes

rotation and translation. Each component class has an average of 30 model fragment

classes describing different aspects of its behavior.

We chose ten electromechanical devices from several encyclopedias [2, 25, 38].

We carefully selected these devices to have similar components that needed different

models. The devices range in complexity from 10 to 54 components. The bimetallic

strip temperature gauge in Figure 1 is one of the devices. The most complex one,

a car distributor system, is shown in Figure 10. The function of the distributor is

to ensure that the spark plugs in the piston chamber fire in sequence at the right

time. It works as follows: as the cam rotates, it opens the contact breaker, causing

the current in the primary windings to drop rapidly (the condenser prevents a spark

32

Battery
m m

m

Primary
winding

Secondary
"''"_-_-_-_-_ winding

Contact

breaker

re
C

Earth _

Distributor

Rotor

Condenser

"V/
Spark
plugs

Figure 10: Car distributor system

from jumping across the contact breaker). The rapid change in current in the primary

winding causes a large induced electromotive force in the secondary winding. At the

same time, the distributor rotor connects the secondary winding to one of the spark

plugs (the rightmost spark plug in the figure). The large induced electromotive force

causes a spark to jump across the spark plug. Descriptions of the other devices can

be found in [28].

Table 3 summarizes the results of our experiments. The first and second column

show the device name and the number of components in each device. This number

includes the components created by the program to account for possible component

interaction paths. The third column shows the number of operating regions of each

device that the model selection program was run on. The fourth column shows the

estimated number of consistent and complete device models. These models have at

most one model fragment from each assumption class, and a model fragment from

each required assumption class. The estimates, derived from the size and organization

of the knowledge base, clearly show that a brute-force search for adequate models is

totally impractical. The fifth column shows the total number of models actually

examined by the program. This is the sum of the number of models examined when

the program constructs an initial model and then simplifies it. These low numbers

show why our model selection method is practical. The last column shows the actual

33

Device name

Bimetallicstrip temperaturegauge
Bimetallicstripthermostat

Flexiblewiretemperaturegauge

of
components

12
10
13

of
regions

2

Estimated
space
3.8e16
5.4e12
2.6e20

Generated
space

46
85
78

Galvanometertemperaturegauge 19 1 6.1e31 120
Electricbell 22 2 6.6e40 117

Magnetic sizing device 22 1 2. le51 117

Carbon pile regulator 26 1 1.5e49 115

Electromagnetic relay thermostat 30 3 8.7e49 293

Tachometer 34 1 6.8e58 195

Car distributor system 54 1 9.9e72 160

Time

(sec)

28.4

43.7

59.9

149.8

262.4

456.0

262.5

472.7

503.6

352.6

Table 3: Summary of experimental results

run time on a Texas Instruments Explorer II workstation. 4

Table 4 shows the chaxacteristics of the models. The first three columns show the

number of model fragments in the most accurate model, in the initial model, and

in the (final) adequate model for each device. Multiple entries for a single device

correspond to running the program on the different operating regions of that device.

The last two columns show the number of equations in the initial and adequate mod-

els. Automatically generated device models usually contain a very large number of

equations and parameters (e.g., a current for each end of an electrical conductor, and

the corresponding Kirchhoff's Current Law equations). We drastically decrease the

number of equations by elementary simplifications, e.g., replacing equals by equals.

The number of equations reported in Table 4 is the number remaining after such

simplifications.

Note that the number of model fragments in the initial model is about half the

number in the most accurate model. This demonstrates that the heuristic method is

effective in finding an initial model that is significantly simpler than the most accurate

model. Note also that, in most cases, the adequate model has on average two-thirds

less model fragments than the initial model. This indicates that the heuristic method

of finding an initial model is not, by itself, sufficient to find an adequate model, or even

a model that is close to being an adequate model; it must be simplified as described

in the previous section.

In conclusion, these results show that the space of complete and consistent device

models is too large for brute-force search. The use of causal approximations, as

implemented in the model composition algorithm described above, allows the program

to systematically explore only a tiny fraction of the search space, making model

4Significantly faster runs have been observed on different machines using different Lisp imple-
mentations. For example, the tachometer example has been run in a little over a minute and a half

on a Sparc Station 2 under Lucid Lisp version 4.1 [Jon L White, personal communication].

34

Devicename

Bimetallicstrip temperaturegauge
Bimetallicstrip thermostat

Numberof model fragments
Most accurate

model

75
54
54

Initial
model

36
38
39

Adequate
model

27
14
31

Flexiblelink temperaturegauge 94 60 25
Galvanometertemperaturegauge 154 98 28

Electricbell 177 7 6
177 108 45

Magnetic sizing device 202 122 43

Carbon pile regulator 211 122 51

211

211

211

Electromagnetic relay thermostat 117

119

74

31

36

14

Tachometer 285 170 44

Car distributor system 348 178 28

Number of

model equations

Initial Adequate

33 13

31 6

36 11

52 13

93 17

6 6

122 35

126 32

131 36

102 13

119 30

73 3

164 30

192 21

Table 4: Characteristics of the models.

selection practical. We also conclude that the heuristic technique for finding an initial

model is effective in finding significantly simpler than the most accurate model, but

is insufficient for finding adequate models. It still needs to be significantly simplified

to produce an adequate model.

7 Related work

Our work shares the motivation and builds upon Falkenhainer and Forbus' work on

compositional modeling [12, 13]. Compositional modeling creates models by compos-

ing model fragments selected from a model fragment library. Each model fragment

is conditioned on a set of modeling assumptions which explicate the approximations,

perspectives, granularity, and operating assumptions underlying the model fragment.

Mutually contradictory assumptions are organized into assumption classes, and a set

of domain-independent and domain-dependent constraints are used to govern the use

of modeling assumptions. An adequate device model contains all the terms men-

tioned in a user query, and uses only model fragments that are entailed by a set

of mutually consistent assumptions that satisfy all the constraints. Adequate models

are constructed by using a variant of constraint satisfaction called dynamic constraint

satisfaction [26], and then validated using either qualitative or numerical simulation.

If the validation discovers any inconsistencies, the process is repeated with this addi-

tional information.

Our work explicitly focuses on compositional modeling for generating causal ex-

35

planations from structural and functional descriptionsof devices. As argued in the
introduction, causal explanationsare essentialfor tutoring systemsand play a key
role in the analysis,design,and diagnosisof devices.

Models that support causalexplanationsare necessaryfor generatingcausalex-
planations and are useful for answeringqueries, running simulations, and making
predictions. They can be usedas basemodelsthat can be fine-tuned and incremen-
tally modified for other tasks. The focuson causalexplanationsallowedusto develop
new techniquesand improve key aspectsof compositionalmodeling. Specifically,

• we improved the knowledgerepresentationby refining and augmentingthe re-
lations betweenmodel fragments in the library and organizing them into the
generalization, possiblemodels,and approximation hierarchies. The organiza-
tion providescompact representations,facilitates knowledge-baseconstruction
and maintenance, and supports efficient model fragment retrieval and device
model generation.

• we introduced causalapproximations, which are commonplacein physicsand
engineering, demonstrated their use in model fragment selection,and built a
usablemedium-sizedmodel fragment library in which all approximations are
causalapproximations.

we redefined model adequacywith respect to generating causalexplanations
of the expected behavior. The expected behavior provides more constraints
on model adequacythan a query sincenot only doesit specify the terms that
must be included in an adequatemodel, but it also specifiesthe causal re-
lations required betweenparameters. This additional constraint leads to the
expectedbehavior being the central determinant of model adequacy,thereby
diminishing the importance of the modeling constraints. Hence,weare able to
uselessexpressiveconstraints, avoidingthe intractability inherent in constraint
satisfaction.

@ we developed an effective order-of-magnitude reasoning technique for behavior

generation as an alternative to qualitative and numerical techniques. Order-of-

magnitude reasoning is at the appropriate level of abstraction: is better able to

discriminate between models than qualitative techniques, and is more efficient

and robust than numerical techniques.

we showed that compositional modeling for causal explanation generation is

tractable when all approximation relations between model fragments are causal

approximations. We replaced the ATMS-based dynamic constraint satisfaction

technique by an efficient model composition algorithm that exploits the prop-

erties of causal approximations.

we avoid instantiating the complete domain theory for the scenario description.

Only those model fragments that are actually used in the search process are
instantiated.

36

• wemodel deviceswith multiple operating regionsdifferently: they handle mul-
tiple operating regionsby selectinga singlemodel for all the regions,although
this model maynot be appropriatefor all the operatingregions.We handleonly
oneregionat atime, sodifferentmodelscanbechosenfor different regions. This
requiresa new set of inputs for eachoperating region.

The result is an efficientmodel compositionalgorithm for generatingcausalapprox-
imations and the models supporting them. Finally, note that the original compo-
sitional modeling algorithm [13] cannot be easily adapted to the task of generating
causal approximations for expectedbehaviors. In that algorithm, the constraints
play a central role in defining model adequacy,and any task focus has to be em-
beddedin theseconstraints. Embeddingsucha task focus is, in general, not easy;
in particular, it is not clear how the expectedbehavior can be expressedas a set of
declarativeconstraints. Furthermore,restricting the expressivityof theseconstraints
is not alwayspossible, so that they require potentially exponential-time constraint
satisfaction during model selection.

Nayak introduced and rigorously analyzedthe theoretical basisof causalapproxi-
mations in [29,31]. The modelcomposition algorithm developedthere simplifies the
most accuratemodel. We built upon this work and extendedit in four ways. First,
we showedhow, in practice, classlevel descriptions of model fragments should be
representedand organizedwithin a model fragment library, including the useof the
possiblemodelsand generalizationhierarchies.Second,weextendedthe model selec-
tion algorithm by including behavior generationusingorder of magnitudereasoning.
This allowed us to ensurethat all significant phenomenaare included in adequate
models. Third, we introduced the componentinteraction heuristic, which allowed us
to find an initial model that is significantly simpler than the most accurate model.
Fourth, we tested our implementation on a variety of examples,providing empirical
validation of the theoretical claims of [29,31].

The work on Graphs of Models [1] discusses a technique for selecting models of

acceptable accuracy. A graph of models is a graph in which the nodes are models

and the edges are assumptions that have to be changed in moving from one model to

another. A model in this graph has acceptable accuracy if its predictions are free of

conflicts, which are detected either empirically or internally. Empirical conflicts are

detected by experimentally verifying a model's predictions, while internal conflicts

are detected by checking the model's predictions against a set of consistency rules

that capture the model's assumptions. When a conflict is detected, a set of domain-

dependent parameter change rules help to select a more accurate model, and the

above process is repeated. Analysis begins with the simplest model in the graph of

models, and terminates when an accurate enough model has been found.

The main difference between the Graphs of Models approach and compositional

modeling is that the Graphs of Models approach explicitly represents models, while

compositional modeling implicitly represents models as a set of model fragments that

can be combined to produce device models. Compositional modeling leads to greater

37

flexibility in tailoring models to specificsituations and can potentially representex-
ponentially many models in the number of model fragments. To get comparable
flexibility in the Graphsof Modelsapproachrequiresan explicit representationof an
exponentially large spaceof devicemodels,which is clearly impractical. An advan-
tage of the Graphs of Models approachis that it identifieswell-understoodmodels
and can associatewith them more efficient specializedproblem solversinstead of a
generalpurposeproblem solverthat is applicableto all models.

The consistencyrulesusedto verify amodel'spredictionsaresimilar to our behav-
ioral preconditions and coherenceconstraints. However,wedonot validate a model's
predictions empirically, and we havenot explicitly addressedthe problem of switch-
ing to a more accurate model in light of an empirical conflict. Our techniquesare
best viewedas providing an intelligent method for selectingan initial model. Since
they alwaysstart the analysiswith the simplest model, making no effort to identify
a better starting model, our techniquesarecomplementaryto theirs: selectan initial
model using our technique,and do model switching usingtheirs.

Using approximations to guide modelinghas beenrecently investigated by Weld
[42]. This work introduces an interesting classof approximations called fitting ap-

prozimations. Informally, a model M2 is a fitting approximation of a model M1

if M1 contains an exogenous parameter, called a fitting parameter, such that the

predictions using M1 approach the predictions using Ms, as the fitting parameter

approaches a limit. Weld shows that when all the approximations are fitting ap-

proximations, the domain-dependent parameter change rules discussed above can be

replaced by a domain-independent technique for model switching. Fitting approxima-

tions and causal approximations are fundamentally incomparable because the former

talks about behavior differences, while the latter talks about causal dependencies.

However, in practice, it appears that fitting approximations are also causal approxi-

mations, making Weld's domain-independent technique for model switching amenable

for use in our system.

Williams' work on producing critical abstractions [48] shares our motivations for

finding adequate models--we are both striving to find parsimonious descriptions of

how a device works. A critical abstraction is a parsimonious description of a de-

vice relative to a set of questions. Given a device model, he constructs a critical

abstraction in three steps: (a) eliminating superfluous interactions; (b) aggregating

interactions that are local to a single mechanism using symbolic algebra; and (c) fur-

ther abstracting the aggregated interactions. Williams' abstraction process is similar

to our model simplification procedure. Specifically, his first step, which eliminates

superfluous interactions, is similar to our simplification operator that drops irrelevant

model fragments. The primary difference between our approaches is one of empha-

sis: we have focussed on the problem of selecting approximations from a prespecified

space of possible approximations, while he has focussed on finding techniques for

automatically abstracting a base model.

Davis's work on model-based diagnosis [7] has been one of the original inspirations

for our work. Davis describes a diagnostic method based on tracing paths of causal

38

interactions. He arguesthat the powerof the approachstemsnot from the specific
diagnostic method, but from the model which specifiesthe allowedpaths of causal
interaction. He showsthat efficient diagnosis,while retaining completeness,can be
obtained by initially consideringmodelswith only a few paths of interactions, and
adding in additional paths when the model fails to account for the symptoms. Our
simplicity ordering on modelsfollowsDavis' diagnostictechnique:diagnosisstarts at
an adequatemodel, with successivelymorecomplexmodelsbeing usedif a model is
unable to accountfor the symptoms. The useof causalapproximationsensuresthat
using more complex modelswill add new paths of causal interaction. We have used
Davis' definition of componentadjacency(two componentsare adjacent if they can
interact with eachother by somemeans). In particular, the component interaction
heuristic is closelyrelatedto the notion of adjacency:adjacentcomponentsmust have
compatible models.

Reasoningabout accuracyis a key aspectof generatingadequatedevicemodels:
a model must be sufficiently accurate to be useful. Recent work has investigated
the issuesinvolved in selectingmodelsof acceptableaccuracy[10, 11,27, 33, 36,43].
In this paper we have not developedsophisticated techniquesfor reasoningabout
model accuracy. A model is deemedto be accurate enough if it satisfiesall the
behavioral preconditions and coherenceconstraints,with different levelsof accuracy
correspondingto different settingsof the thresholds. However,our systemdoesnot
reasonabout the settingsof the thresholds,whosevaluesarepart of the input.

In other related work, Liu and Farleypresenta query-drivenmethod for selecting
and shifting betweenmacroscopicandmicroscopicdomain theories[24]. The selection
and shift of ontologiesis driven by a setof ontological choice r_ules. Iwasaki and Levy

show how relevance reasoning can be used for efficiently selecting model fragments for

simulation [20]. The efficiency of their algorithm is also based on the use of causal ap-

proximations. The primary difference is that they replace our component interaction

heuristic with backward chaining along causal influences. Schut and Bredeweg show

how the parsimony of a model composed of model fragments can be further enhanced

by removing irrelevant model particles, which include system elements, parameters,

parameter values, and parameter relations [34].

8 Conclusion and Future Work

Causal explanations, and the models that support them, play a central role in many

reasoning tasks, such as analysis, design, and diagnosis. This paper presents an im-

plemented polynomial-time model composition algorithm for constructing adequate

models that provide parsimonious causal explanations of the functioning of a device.

The algorithm is based on compositional modeling, a modeling framework in which

adequate device models are constructed by composing model fragments selected from

a model fragment library. The focus on causal explanations allowed us to develop

new techniques for compositional modeling and improve key aspects of the model

39

composition process. To model important aspects of device function, we introduce

expected behaviors, an abstract, causal accounts of what a device does. To focus the

search for a model and guarantee efficient model construction, we use a new approx-

imation relationship between model fragments, called a causal approximation. For

efficient model fragment retrieval and model generation, we organize model fragments

into various hierarchies. For efficient model validation, we use causal ordering and a

new logarithm-based order of magnitude reasoning technique. We have implemented

the model composition algorithm and produced adequate models and causal expla-

nations for a variety of electromechanical devices selected from several engineering

encyclopedias.

We believe that the task of explaining expected behaviors is important in its own

right and complements the task of answering user queries, as addressed in [13]. Ex-

pected behaviors typically define the context in which queries will be asked. Successive

queries are generally related to each other; constructing a device model from scratch

for each query is impractical and inefficient, especially for complex devices. A better

strategy, widely used in engineering, is to construct first a base device model suitable

for a class of queries and then modify, refine, or specialize this device model for each

query as necessary. Furthermore, expected behaviors contain more information than

queries because they not only specify the terms and objects that must be included in

the model, they also also specify their causal relationships. This leads to better base

models and more focused model construction. Expected behaviors provide a natural

way of describing the key elements, properties, and relations that apply to a class

of queries. Models that support causal explanations of expected behavior are more

durable and easier to update than models specifically tailored to a particular query.

The model composition algorithm presented in this paper can be easily adapted for

incremental model revision and modification. Incremental model revision is necessary

to answer a series of queries, to account for more causal relationships, or to refine

an existing model. Instead of starting the algorithm with an empty model, model

composition starts with a base model that is validated and modified as described

in steps 1-6 of the model composition algorithm in Figure 9. Incremental model

modification avoids having to construct a new model from scratch in each situation.

The work described in this paper can be extended in a number of different ways.

We briefly discuss some next.

The expected behavior, captured as a causal relation between parameters, has

proved to be a useful characterization of device function. It is both expressive and

can be checked efficiently using causal ordering techniques. Clearly, more expressive

languages will allow us to represent a wider range of expected behaviors. For exam-

ple, we may want specify the relative directions of parameter change (increasing Tt

causes 8p to increase), the functional relationships between parameters (Tt and 8p are

linearly related), or the different aspects of the device's function, as discussed in the

functional reasoning literature [5]). Developing more expressive languages is in itself

not difficult; the real challenge is to develop more expressive tractable languages. In-

tractable languages compromise the effectiveness of selecting adequate device models,

40

and hence of problem solving. An important research direction is thus the develop-

ment of more expressive languages that allow efficient model composition algorithms.

Accuracy is a very important characteristic of adequate device models. As dis-

cussed earlier, we have not developed sophisticated methods for reasoning about

model accuracy. An important direction for future work is to allow the user to spec-

ify the desired accuracy of the model easily, e.g., by specifying tolerances on certain

parameters. We then need to develop techniques for finding models that guarantee

that predictions will lie within the specified tolerances.

Many devices go through multiple operating regions during the course of their

normal operations. Different operating regions can have different characteristics, re-

quiring the use of different models. We are currently investigating how to generalize

the single-region model composition algorithm to handle multiple operating regions.

This will require (a) generalizing the present order of magnitude reasoning technique

to allow temporal simulation; and (b) techniques for inferring the expected behavior

of each operating region, given the overall expected behavior of the device.

We believe that the compositional modeling framework can be effectively applied

to a variety of tasks. Most prominently, we see its use in producing adequate de-

vice models for fault diagnosis and monitoring, where recent research has shown an

emerging understanding of model adequacy [7, 17]. We believe that the techniques de-

veloped in this paper will prove valuable in developing methods for building adequate

models for diagnosis and monitoring.

Acknowledgements

We would like to thank Edward Feigenbaum, Richard Fikes, Brian Falkenhainer, Re-

nate Fruchter, Andy Golding, Nita Goyal, Yumi Iwasaki, Rich Keller, Alon Levy,

Rajan Ramaswamy, Rich Washington, Dan Weld, and Michael Wolverton for useful

discussions and for comments on earlier drafts. Sanjaya Addanki collaborated in the

initial phase of this project. Pandurang Nayak was supported by an IBM Gradu-

ate Technical Fellowship. Additional support for this research was provided by the

Defense Advanced Research Projects Agency under NASA Grant NAG 2-581 (under

ARPA order number 6822), by NASA under NASA Grant NCC 2-537, and by IBM

under agreement number 14780042.

References

[1] Sanjaya Addanki, Roberto Cremonini, and J. Scott Penberthy. Graphs of models.

Artificial Intelligence, 51:145-177, 1991.

[2] Ivan I. Artobolevsky. Mechanisms in Modern Engineering Design, volume 5. Mir

Publishers, Moscow, 1980.

41

[3] D. Bobrow, editor. Qualitative Reasoning About Physical Systems. North-

Holland, 1984.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

John Seely Brown, R. R. Burton, and Johan de Kleer. Pedagogical, natural

language and knowledge engineering techniques in SOPHIE I, II and II. In

Derek Sleeman and John Seely Brown, editors, Intelligent Tutoring Systems,

pages 227-282. Academic Press, New York, 1982.

B. Chandrasekaran, editor. IEEE Ezpert 6(2). April 1991.

James Crawford, Adam Farquhar, and Benjamin Kuipers. QPC: A compiler

from physical models into qualitative differential equations. In Proceedings of the

Eighth National Conference on Artificial Intelligence, pages 365-372. American

Association for Artificial Intelligence, 1990.

Randall Davis. Diagnostic reasoning based on structure and behavior. Artificial

Intelligence, 24:347-410, 1984.

Johan de Kleer. Multiple representations of knowledge in a mechanics problem-

solver. In Proceedings of the International Joint Conference on Artificial Intelli-

gence, pages 299-304. International Joint Conferences on Artificial Intelligence,

Inc., 1977.

Johan de Kleer and John Seely Brown. A qualitative physics based on conflu-

ences. Artificial Intelligence, 24:7-83, 1984.

Thomas Ellman, John Keane, and Mark Schwabacher. Intelligent model selection

for hillclimbing search in computer-aided design. In Proceedings of the Eleventh

National Conference on Artificial Intelligence, pages 594-599. American Associ-

ation for Artificial Intelligence, AAAI Press/The MIT Press, July 1993.

Brian Falkenhainer. Ideal physical systems. In Proceedings of the Eleventh Na-

tional Conference on Artificial Intelligence, pages 600-605. American Association

for Artificial Intelligence, AAAI Press/The MIT Press, July 1993.

Brian Falkenhainer and Kenneth D. Forbus. Setting up large-scale qualitative

models. In Proceedings of the Seventh National Conference on Artificial Intelli-

gence, pages 301-306. American Association for Artificial Intelligence, 1988.

Brian Falkenhainer and Kenneth D. Forbus. Compositional modeling: Finding

the right model for the job. Artificial Intelligence, 51:95-143, 1991.

[14] Kenneth D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85-168,

1984.

[15] Kenneth D. Forbus. The qualitative process engine. In Daniel S. Weld and Johan

de Kleer, editors, Readings in Qualitative Reasoning about Physical Systems,

pages 220-235. Morgan Kaufmann, 1990.

42

[16]

[1T]

[181

[19]

[2O]

[21]

[22]

Kenneth D. Forbus and A. Stevens. Using qualitative simulation to generate ex-

planations. In Proceedings of the Third Annual Meeting of the Cognitive Science

Society, pages 219-221, 1981.

Walter C. Hamscher. Modeling digital circuits for troubleshooting. Artificial

Intelligence, 51:223-271, 1991.

Jerry R. Hobbs. Granularity. In Proceedings of the Ninth International Joint

Conference on Artificial Intelligence, pages 432-435. International Joint Confer-

ences on Artificial Intelligence, Inc., 1985.

Yumi Iwasaki. Causal ordering in a mixed structure. In Proceedings of the

Seventh National Conference on Artificial Intelligence, pages 313-318. American

Association for Artificial Intelligence, August 1988.

Yumi Iwasaki and Alon Y. Levy. Automated model selection for simulation. In

Working Papers of the Seventh International Workshop on Qualitative Reasoning

about Physical Systems, 1993.

Yumi Iwasaki and Chee-Meng Low. Model generation and simulation of device

behavior with continuous and discrete changes. Technical Report KSL 91-69,

Stanford University, Knowledge Systems Laboratory, 1991.

Yumi Iwasaki and Herbert A. Simon. Causality in device behavior. Artificial

Intelligence, 29:3-32, 1986.

[231 Benjamin Kuipers. Qualitative simulation. Artificial Intelligence, 29:289-338,

1986.

[24] Zheng-Yang Liu and Arthur M. Farley. Shifting ontological perspective in rea-

soning about physical systems. In Proceedings of the Eighth National Conference

on Artificial Intelligence, pages 395-400. American Association for Artificial In-

telligence, AAAI Press/MIT Press, July 1990.

[25] David Macaulay. The Way Things Work. Houghton Mifflin Company, Boston,
1988.

[26]

[2T]

[28]

Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction. In

Proceedings Eighth National Conference on Artificial Intelligence, pages 25-32.

American Association for Artificial Intelligence, AAAI Press/MIT Press, July

1990.

P. Pandurang Nayak. Validating approximate equilibrium models. In Proceedings

of the 1991 Model-Based Reasoning Workshop, July 1991.

P. Pandurang Nayak. Automated Modeling of Physical Systems. PhD thesis,

Stanford University, Department of Computer Science, Stanford, CA, 1992.

43

[29]

[3o]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[4o]

P. Pandurang Nayak. Causal approximations. In Proceedings of the Tenth Na-

tional Conference on Artificial Intelligence, pages 703-709. American Association

for Artificial Intelligence, July 1992.

P. Pandurang Nayak. Order of magnitude reasoning using logarithms. In

B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge Rep-

resentation and Reasoning: Proceedings of the Third International Conference

(KR92), San Mateo, CA, 1992. Morgan Kaufmann.

P. Pandurang Nayak. Causal approximations. 1993. Submitted for publication.

Ramesh S. Patti, Peter Szolovits, and William B. Schwartz. Causal understand-

ing of patient illness in medical diagnosis. In Proceedings of the Seventh Interna-

tional Joint Conference on Artificial Intelligence, pages 893-899. International

Joint Conferences on Artificial Intelligence, Inc., 1981.

Olivier Raiman and Brian C. Williams. Caricatures: Generating models of dom-

inant behavior. In Proceedings of the AAAI-9P Workshop on Approzimation and

Abstraction of Computational Theories, 1992.

Cis Schut and Bert Bredeweg. Automatic enhancement of model parsimony. In

Working Papers of the Seventh International Workshop on Qualitative Reasoning

about Physical Systems, 1993.

D. Serrano and David C. Gossard. Constraint management in conceptual de-

sign. In D. Sriram and R. A. Adey, editors, Knowledge Based Expert Systems

in Engineering: Planning and Design, pages 211-224. Computational Mechanics

Publications, 1987.

Mark Shirley and Brian Falkenhainer. Explicit reasoning about accuracy for

approximating physical systems. In Working Notes of the Automatic Generation

of Approximations and Abstractions Workshop, pages 153-162, July 1990.

Herbert A. Simon. On the definition of the causal relation. Journal of Philosophy,

49:517-528, 1952.

C. van Amerongen. The Way Things Work. Simon and Schuster, 1967.

J. W. Wallis and E. H. Shortliffe. Explanatory power for medical expert systems:

Studies in the representation of causal relationships for clinical consultations.

Methods Inform. Med., 21:127-136, 1982.

Sholom M. Weiss, Casimir A. Kulikowski, Saul Amarel, and Aran Safir. A

model-based method for computer-aided medical decision-making. Artificial In-

telligence, 11:145-172, 1978.

44

[41] Daniel S.Weld. Explaining complexengineereddevices.TechnicalReport TR-
5511,BBN, Cambridge,MA, 1983.

[42] Daniel S.Weld. Approximation reformulations. In Proceedings Eighth National

Conference on Artificial Intelligence, pages 407-412. American Association for

Artificial Intelligence, AAAI Press/MIT Press, July 1990.

[43] Daniel S. Weld and Sanjaya Addanki. Query-directed approximation. In Boi

Faltings and Peter Struss, editors, Recent Advances in Qualitative Physics. MIT

Press, Cambridge, MA, 1991.

[44] Daniel S. Weld and Johan de Kleer, editors. Readings in Qualitative Reason-

ing About Physical Systems. Morgan Kaufmann Publishers, Inc., San Mateo,

California, 1990.

[45] Brian C. Williams. Qualitative analysis of MOS circuits. Artificial Intelligence,

24:281-346, 1984.

[46] Brian C. Williams. Invention from First Principles via Topologies of Interactions.

PhD thesis, M.I.T., 1989.

[47] Brian C. Williams. Interaction-based invention: Designing novel devices from

first principles. In Proceedings Eighth National Conference on Artificial Intel-

ligence, pages 349-356. American Association for Artificial Intelligence, AAAI

Press/MIT Press, July 1990.

[48] Brian C. Williams. Critical abstraction: Generating simplest models for causal

explanation. In Proceedings of the Fifth International Workshop on Qualitative

Reasoning about Physical Systems, May 1991.

45

